3 research outputs found

    A simplified algorithm for inverting higher order diffusion tensors

    Get PDF
    In Riemannian geometry, a distance function is determined by an inner product on the tangent space. In Riemann-Finsler geometry, this distance function can be determined by a norm. This gives more freedom on the form of the so-called indicatrix or the set of unit vectors. This has some interesting applications, e.g., in medical image analysis, especially in diffusion weighted imaging (DWI). An important application of DWI is in the inference of the local architecture of the tissue, typically consisting of thin elongated structures, such as axons or muscle fibers, by measuring the constrained diffusion of water within the tissue. From high angular resolution diffusion imaging (HARDI) data, one can estimate the diffusion orientation distribution function (dODF), which indicates the relative diffusivity in all directions and can be represented by a spherical polynomial. We express this dODF as an equivalent spherical monomial (higher order tensor) to directly generalize the (second order) diffusion tensor approach. To enable efficient computation of Riemann-Finslerian quantities on diffusion weighted (DW)-images, such as the metric/norm tensor, we present a simple and efficient algorithm to invert even order spherical monomials, which extends the familiar inversion of diffusion tensors, i.e., symmetric matrices.</p

    A novel Riemannian metric for geodesic tractography in DTI

    No full text
    One of the approaches in diffusion tensor imaging is to consider a Riemannian metric given by the inverse diffusion tensor. Such a metric is used for white matter tractography and connectivity analysis. We propose a modified metric tensor given by the adjugate rather than the inverse diffusion tensor. Tractography experiments on real brain diffusion data show improvement in the vicinity of isotropic diffusion regions compared to results for inverse (sharpened) diffusion tensors
    corecore